Sobolev Orthogonal Polynomials with a Small Number of Real Zeros

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeros of orthogonal polynomials in a non-discrete Sobolev space

Let fS n g denote a set of polynomials orthogonal with respect to the Sobolev inner product hf; gi = Z b a f(x)g(x)d 0 (x) + Z b a f 0 (x)g 0 (x)d 1 (x); where 0. If d 0 = d 1 is the Jacobian measure, then for n 2 and suuciently large, S n has n diierent real zeros interlacing with the zeros of P ;; n?1. This result can be generalized to a situation where d 0 and d 1 are not identical, but are ...

متن کامل

Zeros of Sobolev Orthogonal Polynomials of Gegenbauer Type

where l > 0 and {dk0, dk1} is a so-called symmetrically coherent pair, with dk0 or dk1 the classical Gegenbauer measure (x−1) dx, a > −1. If dk1 is the Gegenbauer measure, then Sn has n different, real zeros. If dk0 is the Gegenbauer measure, then Sn has at least n−2 different, real zeros. Under certain conditions Sn has complex zeros. Also the location of the zeros of Sn with respect to Gegenb...

متن کامل

Monotonicity of zeros of Laguerre–Sobolev-type orthogonal polynomials

Article history: Received 15 December 2008 Available online 3 March 2010 Submitted by D. Waterman

متن کامل

Sobolev Spaces with Respect to Measures in Curves and Zeros of Sobolev Orthogonal Polynomials

In this paper we obtain some practical criteria to bound the multiplication operator in Sobolev spaces with respect to measures in curves. As a consequence of these results, we characterize the weighted Sobolev spaces with bounded multiplication operator, for a large class of weights. To have bounded multiplication operator has important consequences in Approximation Theory: it implies the unif...

متن کامل

Varying discrete Laguerre-Sobolev orthogonal polynomials: Asymptotic behavior and zeros

We consider a varying discrete Sobolev inner product involving the Laguerre weight. Our aim is to study the asymptotic properties of the corresponding orthogonal polynomials and of their zeros. We are interested in Mehler–Heine type formulas because they describe the asymptotic differences between these Sobolev orthogonal polynomials and the classical Laguerre polynomials. Moreover, they give u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1994

ISSN: 0021-9045

DOI: 10.1006/jath.1994.1052